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Nonstationary supersonic flow of a nonviscous gas in a step channel with Mach number M = 3 is calculated
using the FLUENT package. The accuracy of predictions is analyzed on different types of grids, including
those with dynamic local adaptation, and on numerical schemes of different approximation orders.

The universal software package FLUENT is presented by its developers as a flexible and efficient tool for nu-
merical modeling of hydrodynamic and thermophysical processes, including sub- and transonic flows of viscous and
nonviscous gases. This is predetermined in many respects by the fact that the employment of nonstructurized finite-dif-
ference grids in it allows consideration of gasdynamics and heat exchange in multidimensional regions of arbitrary ge-
ometry. Although universal packages similar to FLUENT have no limitations, in practice, on selection of the shape of
the object calculated, they are nonetheless characterized by the problem of verification, related to ensuring the accept-
able accuracy of numerical predictions on grids with the number of cells permitted by the available computational re-
sources. The above problem arises, as a rule, from the necessity of representing the complex character of sometimes
different-scale flow on corresponding grid structures, which in many situations is not entirely taken into account by the
developers of packages. Below, we analyze numerical schemes of different approximation orders and adaptive grid
structures realized in the FLUENT package with the example of calculation of the compressible flow of an ideal gas
in a region of simple geometry; this flow is characterized by the formation of a nonstationary multielement shock-
wave pattern.

The problem on supersonic flow in a channel with a step for Mach number M = 3 has been a popular test
for comparison of the accuracy of different computational schemes over many years (see, for example, [1]). Of special
interest is the degree of resolution of complex gasdynamic elements and phenomena — the nonstationary interaction
of compression and rarefaction and Mach disks occurring in irregular interaction of shock waves with each other and
with the walls — with the use of the selected numerical algorithm.

The calculation region represents a channel with an abrupt contraction. The inlet portion has a unit height; the
length of the channel is equal to 3, and the step of height 0.2 is located at a distance of 0.6 from the left-hand inlet
boundary of the region.

By the finite-difference method we solve the system of Euler equations [2, 3] for a perfect gas with an adi-
abatic exponent of γ = 1.4. For evaluation of the efficiency and accuracy of the numerical algorithm it is convenient
to use a set of parameters whose initial state is close to unit values, i.e., in this case

ρ = 1.4 ,   ux = 3 ,   uy = 0 ,   p = 1 ,   γ = 1.4 . (1)

The above set of parameters determines the local velocity of sound a = √γ(p ⁄ ρ)  = 1; the Mach number becomes nu-
merically equal to the velocity of the incoming flow M = ux

 ⁄ a = ux. An implicit upwind scheme of second order of
approximation with splitting of variables according to Roe [4–6] is employed for approximation of the Euler equations.

The set of parameters (1) is specified as the input boundary conditions. Nonflow conditions are set on imper-
meable channel portions. In the outlet cross section, the parameters of the flow are insignificant, since its outflow oc-
curs with a supersonic velocity. As the initial conditions we assume that the entire channel is filled with gas; the
parameters of the gas are equal to the parameters at the inlet boundary, which corresponds to an abrupt beginning of
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motion of the step channel with a supersonic velocity. The Courant number is set equal to 0.95, and numerical mod-
eling of the nonstationary process is carried out with a fixed time step of 0.005, which is quite acceptable in the case
of employment of the implicit scheme of second order of approximation in time. Twenty local iterations are performed
at each time-integration step. It should be noted that a change from 10 to 20 in their number does not influence the
solution of the problem.

To evaluate the accuracy of numerical predictions we have carried out the calculations on the following grids:
(1) a uniform triangular grid with an initial number of nodes of about 8000 (Fig. 1a), (2) a nonuniform tetragonal grid
with an initial number of nodes of about 35,000 (Fig. 1b), and (3) a uniform tetragonal grid with a number of (960
× 320) nodes of about 300,000. On the first two grids, numerical modeling is performed according to the scheme of
second order of approximation. For highly accurate resolution of the nonstationary gasdynamic processes we use the
algorithm of dynamic local adaptation of the grid [7–9] to the density gradient with four and two levels of fractiona-
tion for the first two grids. In the process of solution of the problem, the number of nodes increased from 8000 to
350,000; the fractionation and merging thresholds were selected equal to 0.01 and 0.02 (Fig. 1a) and 0.2 and 0.007
(Fig. 1b) respectively. On a grid of the third type, we have carried out numerical modeling of nonstationary flow in
the step channel with the use of the schemes of first and second orders of approximation on a grid without local ad-
aptation. As follows from Fig. 1, the local grid adaptation to the density gradient allows practical reproduction of the
shock-wave structure of supersonic flow past the step, irrespective of the selected topology of the initial grid.

Figures 2 and 3 compare the isochoric fields calculated at the instant of time t = 4. The standard solution by
which the accuracy of numerical predictions is evaluated has been taken from [1]. It is well known that a charac-
teristic feature of the steady-state regime of flow past a step is the formation of a stationary curvilinear shock wave
in front of it. Clearly, all the numerical approaches in question, combining the use of schemes of different approxima-
tion orders and computational grids of different types, have turned out to be advantageous only in representation of
this structural element.

Let us briefly analyze the solutions obtained on a uniform dense grid using the schemes with different scheme
diffusions (Fig. 2a and b). The scheme of second order of approximation correctly reproduces the flow structure oc-
curring in interaction of the departed shock wave with the channel wall. This scheme yields correct predictions of the
size and position of the upper Mach disk (despite the strong nonmonotonicity of the solution behind it). The scheme
of first order somewhat understates the size of the Mach disk.

The two schemes (of both the first and second order) lead to the formation of a false Mach disk in diffraction
of the reflected head shock wave on the step. Furthermore, in using them we were unable to reproduce the curvilinear
wall shock occurring just behind the sharp edge of the step (the scheme of first order "smeared out" and the scheme
of second order represented it incorrectly). On the whole, the employment of the schemes of both the first and second

Fig. 1. Triangular (a) and tetragonal (b) computational grids locally adapted to
solution (by the density field).
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approximation order on a very detailed uniform grid with a number of nodes of 960 × 320 has not furnished satisfac-
tory results.

The employment of adapted grids (Fig. 2c and d) allows detection of all the elements of the gasdynamic
structure with the same, in practice, number of nodes as that for the selected detailed uniform grid. Very close results
have been obtained on the grids of different topologies (triangular and tetragonal), which allows a conclusion on a cer-
tain degree of reliability of the predictions and adequacy of the computational algorithm. However, we should note
certain dissonances which cause the errors of determination of the characteristics of flow in some zones singled out in
Fig. 3. The stationary head shock wave calculated on the triangular grid interacts with the wall to form an upper Mach
disk shorter than that predicted in [1] (of about 10% of the inlet length of the channel), which predetermines the dis-
placement of the entire flow pattern to the right (Fig. 3, zone 3). The nonmonotonicity of the solution behind by the
upper Mach disk and in the zone between the departed head shock wave and the step is clearly illustrated (Fig. 3,
zones 2 and 4). At the same time, we have been able to reproduce quite accurately (according to [1]) the shock wave
formed just after the refraction waves in the case of flow past the right angle of the step (Fig. 3, zone 5). We should
also note the correct representation of shear layers in the zone of contact discontinuity coming from the triple point,
i.e., the point of intersection of the upper Mach disk and the head shock wave (Fig. 3, zone 3). Secondary shock
waves and their further interaction with the channel walls and with each other have been reproduced quite satisfacto-

Fig. 2. Comparative analysis of the isochoric patterns at the instant t = 4, ob-
tained using difference schemes of different approximation orders on regular
and irregular computational grids: a uniform tetragonal grid (960 × 320) and
schemes of first (a) and second (b) orders; a triangular adapted grid and a
scheme of second order (c); a tetragonal adapted grid and a scheme of second
order (d).
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rily, including the reflection of the secondary shock wave from the step (Fig. 3, zone 1). We note that the selection
of the triangular adapted grid for comparative analysis of the solutions in Fig. 3 has been dictated by the fact that
nonstructurized grids of such a type are most frequently used in the practice of employment of the FLUENT package.
At the same time, a comparison of the patterns in Fig. 2c and d shows that the tetragonal grid topology allows better
detection of the size and location of the Mach shock, preserving the nonmonotonicity of the solution behind it. As a
consequence, the configuration of reflected shocks corresponds to the shock-wave structure of the standard solution to
a greater extent [1].

This work was carried out with partial financial support from the Russian Foundation for Basic Research
(grant Nos. 02-02-81035, 04-02-81005, and 02-01-01160.

NOTATION

a, local velocity of sound; M, Mach number; p, pressure; t, time; ux and uy, longitudinal and lateral compo-
nents of the velocity vector; γ, adiabatic exponent; ρ, density.
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Fig. 3. Comparative analysis of the isochoric patterns (obtained on an adapted
triangular grid using the FLUENT package (a) and presented in [1] (b)) in the
case of supersonic flow past a step channel at t = 4.
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